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Manipulating electron wave packets

J. R. R. VERLET and H. H. FIELDING{

Department of Chemistry, King’s College London, Strand,

London WC2R 2LS, UK

Technological advances over the last decade have led to a signi® cant amount
of research being aimed at investigating the time-dependent behaviour of electron
wave packets. The ultimate goal is to generate customized wave packets that can
control electronic processes in atoms and molecules. Coherent control schemes
involving electron wave packets have proved to be of fundamental importance in
our quest to understand quantum phenomena. Exotic quantum states such as the
SchroÈ dinger cat states have been excited and studied. The wavefunction of a wave
packet may now be characterized completely and manipulated into a new form.
Autoionization of electron dynamics in complex two-electron systems can be
suppressed. Electron wave packets have been excited in molecules. This review
provides an overview of the relatively new and rapidly expanding ® eld of electron
wave-packet manipulation with particular focus on the experimental achieve-
ments and their implications.
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1. Introduction

As early as 1926, it was realized that a spatially localized non-stationary `classical

particle’ could be forged from a coherent superposition of quantum-mechanica l

wavefunctions (SchroÈ dinger 1926). Such superposition states, or wave packets, are
particularly fascinating because they allow us to translate exact quantum-mechanica l

descriptions of atoms and molecules into the more intuitive classical world. Because

of technological advances over the last 20 years a signi® cant amount of research is

now aimed at studying the time-dependent behaviour of electronic and molecular

wave packets with the goal of customizing them to control atoms and molecules.
Several control schemes exist which use light to drive atoms or molecules along

predetermined pathways, all of which exploit the coherence of laser light to

manipulate the quantum-mechanica l phase relationships between the various

eigenstates of the system. The frequency domain approach ® rst proposed by Brumer

and Shapiro (1986, 1992) and Shapiro and Brumer (1986) is based on the principle

that the probability of producing a speci® ed ® nal state from a given initial state
depends on the phase relationships between all the independent excitation pathways

connecting these states. By employing two coherent light sources with frequencies !a

and !b, which are in resonance with the desired state at energy a!b ˆ b!a, and

manipulating the relative phases and amplitudes, the population of the desired

product may be tuned. A very nice example of this type of control was demonstrated
by Zhu et al. (1995) who observed modulations in both the H‡ and the HI‡ ion

signals due to interference between one- and three-photon excitation paths to

photoionizing and photodissociating states of HI. Of more relevance to this review

is the time-domain approach ® rst introduced by Tannor and Rice (1985, 1988),

which employs sequences of ultrashort light pulses to excite superpositions of

molecular eigenstates, or wave packets. The frequencies, amplitudes and phases of
the pulses are tailored to steer the wave packet into a predetermined state at a later

time. A classic example of this method of control is the experiment of Baumert et al.

(1991) which uses femtosecond pulses to ionize and dissociatively to ionize the Na2

molecule. These forms of control have received devoted attention and have been

reviewed by several researchers (Tannor and Rice 1988, Brumer and Shapiro 1992,
Warren et al. 1993, Gorden and Rice 1997). A related approach based on feedback

control, developed by Judson and Rabitz (1992), employs iterative computational

schemes to custom design optimal laser ® elds for speci® c chemical or physical

problems. Following the enormous technological advances in pulse tailoring

methods, numerous applications to chemical systems have been recorded (Kawa-

shima et al. 1995, Weiner 2000). Arbitrary pulses may be generated using devices

such as acousto-optic modulators (Hillegas et al. 1994) or liquid-crystal modulators
(Heritage et al. 1985) whose pixels may be programmable, thus creating the desired

pulse shape (Weiner et al. 1990, Wefers and Nelson 1993). Optimal control theory

has been realized experimentally by combining it with learning algorithms in which

the laser optimizes its own ® eld with a feedback loop. Bergt et al. (1999) recently

performed a very elegant experiment exploiting optimal control theory to control
organometallic photodissociation branching ratios using feedback-optimized phase-

shaped femtosecond laser pulses.

Coherent control and optimal control of molecular dynamics is an extremely

active area, but how far can they be applied to electron dynamics? With this review

we hope to provide a coherent overview of this relatively new ® eld with particular

focus on the experimental achievements and their implications.
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2. Radial wave-packet dynamics

When a short laser pulse interacts with a hydrogenic atom, a portion of the

electron is excited from its ground state to a number of high Rydberg states, creating

a Rydberg wave packet. The amplitudes of the individual components of the
superposition depend on both the frequency pro® le of the laser pulse and the square

of the dipole moments from the ground state: hnljerjgi / n 3=2. As a consequence of

the electric dipole selection rules, there is negligible contribution from high-angular-

momentum states and the wave packet is localized in the radial coordinate only. At

short times, the wave packet mimics a classical electron moving on a Kepler orbit. It
is created at the inner turning point but subsequently oscillates backwards and

forwards between the inner and outer turning points. At longer times, the wave

packet spreads and begins to exhibit non-classical behaviour. The ® rst experimental

observation of a radial wave packet was only reported just over a decade ago (ten

Wolde et al. 1988), despite some earlier theoretical work (Alber et al. 1986, Parker

and Stroud 1986a, b); however, there has since been a great deal of interest in the
subject (for example Yeazell et al. (1990 1991), Meacher et al. (1991), Broers et al.

(1993), Wals et al. (1994), Jones (1996), Lankhuijzen and Noordam (1996),

Schumacher et al. (1997) , Lyons et al. (1998) and Ramswell et al. (1999)) (see also

the excellent reviews by Alber and Zoller (1991) and Jones and Noordam (1997) and

references therein).
Radial wave packets are especially attractive as they have some remarkable

properties. For example, the spatial extent of a Rydberg state scales as n2 and so, for

a wave packet with average principal quantum number n ˆ 50, the inner and outer

turning points are over one quarter of a micron apartÐ almost macroscopic. Of

course, under laboratory conditions, there is a limit to how high in the Rydberg
series one may excite owing to interactions with the surroundings such as incoherent

decay by black body radiation, neighbouring electron± ion complexes or stray ® elds

(Gallagher 1994). Another peculiarity is the period of electronic motion. A wave

packet with average n ˆ 50 will have a classical orbit period of almost 20 ps, which is

of the same order of magnitude as molecular rotation and is more than one thousand

times slower than a typical molecular vibration. Consequently, the Born± Oppenhei-
mer approximation breaks down for electron wave-packet states in a molecule.

Because of the vast spatial extent of the Rydberg states involved in these

superposition states, the electron wave packet may be considered to spend most of its

time su� ciently far away from the core to feel only the Coulombic potential of the

positive charge of the ion left behind. It is worth noting that this potential is
mathematically identical with the gravitational ® eld felt by a planet orbiting a large

star. The distance rc, beyond which the electron experiences the 1=r ® eld is

determined by the size of the core. For hydrogen, the electron will always feel such

a potential, but when considering other one valence electron systems such as the

sodium or potassium atoms which have an electron cloud around the nucleus, the
Rydberg electron will feel a Coulomb potential at a distance r > rc but a more

complex potential when it enters the core region and interacts with the remaining

core electrons.

Assuming that the radial motion is separable from the angular part, the radial

part of the SchroÈ dinger equation may be written as

d2Á¶

dr2
‡ 2" ‡ 2

r

¶…¶ ‡ 1†
r2

³ ´
Á¶ ˆ 0; …1†
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where the term in large parentheses is twice the radial kinetic energy of the electron.

This equation has been studied extensively and solutions to it are well documented

(Fano 1970). Within the classically allowed limit " < 0, the solutions of (1) have the

form

Á¶…¸; r† :
f¶…¸; r†
g¶…¸; r†

» ¼
; …2†

where

" ˆ 1

2¸2
: …3†

These two solutions are real oscillatory functions shifted by a phase from each other

and are regular and irregular respectively at the origin r ˆ 0. For hydrogen, the

radial diŒerential equation must be satis® ed at all r (including r ˆ 0). We can thus

say that, since the only regular solution at the origin is f¶…¸; r†, the irregular Coulomb
function must be discarded. When the core has a ® nite size, which is the case for all

other atoms and for molecules, the irregular function is also required since the

Coulombic potential does not penetrate to r ˆ 0 owing to the core electrons. The

wavefunction for any atom in a region r > rc is therefore expressed as a linear

combination of the two Coulomb functions:

Á¶…¸; r† ˆ af¶…¸; r† ‡ bg¶…¸; r†; …4†

where a and b determine contributions of the individual functions and are chosen to

be

a ˆ cos…p·¶†;

b ˆ sin…p·¶†:
…5†

a and b are therefore determined entirely by a constant ·¶. When ·¶ 5 0 or 1, the

solution is hydrogenic and, when ·¶ ˆ 1
2
, the irregular solution is the sole contributor

to the wavefunction.

Of course, these functions need to satisfy certain boundary conditions. In

particular, when considering bound states, the wavefunction must vanish as r

approaches in® nity. The asymptotic form of the Coulomb functions are

Á¶…¸; r ! 1† :
f¶…¸; r ! 1† ! C…r† sin‰p…¸ ¶†Š exp

r

¸

± ²

g¶…¸; r ! 1† ! C…r† cos‰p…¸ ¶†Š exp
r

¸

± ²

8
><

>:

9
>=

>;
; …6†

where C…r† is a function that goes to zero more slowly than the exponential blows up

as r ! 1. We are now in a position to write the radial wavefunction in the

asymptotic limit and impose the boundary condition on it:

0 ˆ Á¶…¸; r ! 1† ! fsin ‰p…¸ ¶†Š cos …p·¶† ‡ cos ‰p…¸ ¶†Š sin …p·¶†gC…r† exp
r

¸

± ²
:

…7†

For a bound state, the term inside the curly brackets must equal zero and, as ¶ is an
integer, the boundary condition may be expressed as

‰tan …p¸† ‡ tan …p·¶†Š ² sin ‰p…¸ ‡ ·¶†Š ˆ 0: …8†
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The second of these identities is only zero when ¸ ‡ ·¶ ˆ n ˆ 0; §1; §2; . . . . Not all

of these solutions are sensible and values with any physical meaning are those where

n ˆ ¶ ‡ 1; ¶ ‡ 2; . . . and hence ¸ ˆ n ·¶. So we can see that the energy levels n of a

particular Rydberg series are shifted by ·¶ with respect to the hydrogenic series. The

phase shift p·¶ or quantum defect ·¶ is almost energy independent because the

electron kinetic energies are extremely large at the core.

This Coulomb wavefunction approach to the Rydberg problem forms the basis

of multichannel quantum defect theory (Seaton 1966, 1983) which is most commonly

employed to describe interactions of Rydberg series with ionization or predissocia-
tion continua or with other series in both atoms and molecules. A time-dependent

extension to this has been proposed (Alber et al. 1986) and used to model real atomic

(Robicheaux and Hill 1996, Lyons et al. 1998, Ramswell and Fielding 1998, Texier

and Robicheaux 2000) and molecular (Fielding 1994, 1997, Texier and Jungen 1998,

1999, Texier et al. 2000) systems.

A superposition of these Coulombic states, excited from a tightly bound lower

state, will evolve along the radial coordinate. The period of motion is ½cl ˆ 2p·nn3,

where ·nn is the average principal quantum number in the superposition. However, as

already mentioned, the wave packet spreads owing to the anharmonicity of the

atomic potential. At longer times the head of the wave packet catches up with the tail

and the wave packet is eŒectively smeared out along the radial coordinate between

the classical inner and outer turning points. There is now no longer any analogy with

classical mechanics. A series of interference patterns with localized islands of
probability distribution are generated at well-determined times. For a wave packet

composed of n Rydberg states, n m (m ˆ 1; 2; : : :; n 1) miniature wave packets

may be observed at times Tm ˆ Trev=…n m†, where 2Trev ˆ TR ˆ 2·nn½cl=3. TR is the

revival time as de® ned by Averbukh and Perelman (1987). At time t ˆ Tm, peaks are

observed in the recurrence spectrum at ½cl=…n m† (® gure 1). Such partial revivals

are a direct consequence of quantum interference and have no classical analogue.

The revivals and fractional revivals can be obtained by expanding the energy En

around the average energy E·nn. A Taylor-series expansion gives the following

expression for the energy:

En ˆ 1

2n2

ˆ 1

2…·nn ‡ ¯n†2

ˆ 1

2·nn2
1 2

¯n

·nn
‡ 3

¯n

·nn

³ ´2

4
¯n

·nn

³ ´3

‡ : : :

" #

; …9†

where ¯n ˆ ·nn n and ¯n ½ ·nn. The ® rst term in the square brackets simply yields the

average energy of the wave packet. The term linear in ¯n gives the harmonic energy

spacing and yields the classical evolution of the wave packet: ½cl ˆ 2p·nn3. The

quadratic ® rst order anharmonic term gives rise to the revival time. Similarly,

higher-order terms (cubic) introduce additional dispersion but materialize slowly

(see arrow in ® gure 1). The cubic term leads to the s̀uper’ revival time (Wals et al.

1995).
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The long-time dynamics of radial wave packets have been described in detail by

Averbukh and Perelman (1989) and also by Alber et al. (1986), Parker and Stroud

(1986a, b), Gaeta and Stroud (1990) and Wals et al. (1995). It was pointed out by

Averbukh and Perelman that the miniature wave packets observed in a partial

revival have a de® ned phase relationship between them and they gave an analytical
expression for these interference eŒects. A second-order partial revival may be

written as

C2…r; t† ˆ …2† 1=2 exp
ip
4

³ ´
Ccl…r; t† ‡ exp

ip
4

³ ´
Ccl…r; t ‡ 1

2½cl†
µ ¶

: …10†

The two partial wave packets have a p=2 phase diŒerence between them and similar
results can be obtained for higher-order partial revivals. This phase diŒerence can be

exploited to engineer some remarkable quantum states which will be discussed in

detail below.

3. Dynamics of interfering wave packets

Before the interference of more than one wave packet in a Rydberg system

was used to generate unique quantum states, it was employed as a detection

method.

J. R. R. Verlet and H. H. Fielding288

Figure 1. (a) Experimental and (b) calculated recurrence spectra of a radial wave packet
excited at around ·nn 5 46.5 (Dn º 6:5) in rubidium clearly showing a full revival Trev

about 237 ps after creation. Second-, third- and fourth-order partial revivals are also
visible at the fractional revival times, Trev=2, Trev=3, and Trev=4, respectively. The
inset shows even higher-order partial revivals (sixth and seventh order) for a wave
packet excited at ·nn 5 53.3, Dn º 9:9. (Figure 1 from Wals et al. (1994).)
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3.1. Optical Ramsey method

The idea of exciting a second wave packet in a Rydberg system, using an identical

but delayed laser pulse, to monitor the evolution of the ® rst wave packet was ® rst

suggested by Noordam et al. (1992). The technique was adapted from a similar

scheme that had been developed for molecular wave packets (Scherer et al. 1990,

1991). The technique is explained properly later in this section using perturbation

theory but it is useful to acquire a physical picture ® rst.

With reference to ® gure 2, the ground state gj i will couple to a number of

Rydberg states upon irradiation with a picosecond pulse. This coupling manifests

itself as Rabi oscillations at the optical frequency, de® ning the time-dependent

population amplitude an…t† of the Rydberg states nj i. When a second identical but

delayed phase-coherent probe wave packet is excited, it too will couple the Rydberg

states with the ground state in a similar fashion. However, whenever the pump wave

packet is localized at the core (at a multiple of the orbit period for short times), the

second probe wave packet will oscillate between being in phase or out of phase with

the ® rst pump wave packet, depending on the relative phases of the excitation pulses.

When in phase, the oscillation in an…t† is doubled and the Rydberg population is

2an…t†j j2. When out of phase, the Rydberg population is pumped back down to the

ground state. As the ® rst pump wave packet moves away from the core region, the

Manipulating electron wave packets 289

Figure 2. (a) Rabi oscillations in the population amplitudes of Rydberg states nj i excited at
a time t ˆ 0 from a ground state gj i using a single short laser pulse. Away from the
core, the electron is decoupled from the molecular ion until it returns after a full
orbit, ½cl. After time ½cl, a second identical short laser pulse interacts with the atom
(......) and, depending on the phase diŒerence between the two pulses, the Rabi
oscillation amplitudes are (b) doubled if they are in phase and they interfere
constructively or (c) zero when out of phase and and they interfere destructively.D
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Rydberg electron is decoupled from the core and the probe wave packet will simply

undergo Rabi oscillations independently, such that the total Rydberg population is

the statistical (incoherent) sum 2 an…t†j j2. The population may be monitored with

almost unit e� ciency using a delayed pulsed electric ® eld to ionize the Rydberg
states. This has an obvious advantage over earlier pump± probe experiments using

photoionization which suŒers from low absorption cross-sections and a compara-

tively pitiful signal-to-noise ratio. Experimentally, this scheme requires precise

control of the phase diŒerence between the two optical pulses, which in turn requires

a stabilized interferometer. This may be accomplished by locking a feedback circuit
on to a fringe pattern generated in the same interferometer, an example of which has

been discussed in detail by Hong et al. (1998).

3.2. Young’s double-slit experiment

Young’s double-slit experiment is fundamental to wave mechanics and is central

in ® elds such as coherence and optics. Although the optical Ramsey method itself

has been described as a temporal analogue of Young’s double-slit experiment (Metiu

and Engel 1990), Noel and Stroud (1995) have reported a beautiful atomic analogue
of the double-slit experiment in which interference patterns generated by two

overlapping wave packets are monitored by a third wave packet.

In Young’s original experiment, a light source was shone at an opaque screen

containing two slits, resulting in two coherent sources of light. An interference

pattern of fringes was then observed on a screen in the distance where the beams
overlapped spatially. In the atomic analogue, two wave packets are excited at

diŒerent ends of the radial coordinate representing the two coherent light sources.

These wave packets are then allowed to propagate and interfere and the interference

pattern is monitored using a third wave packet as the probe.

The Noel± Stroud experiment employed picosecond laser pulses to generate radial

wave packets in an atomic beam of potassium. The average principal quantum
number of the superpositions was approximately ·nn ˆ 66. Two identical wave packets

were excited with a delay of half the Kepler orbit period plus a controlled phase shift

¿ between them. In order to observe any interference between the two wave packets

they must overlap spatially and so they were allowed to evolve to the second-order

partial revival. The resulting interference pattern was then monitored by the optical
Ramsey method using a third pulse identical with the ® rst two (® gure 3). When the

phase diŒerence between the two pump pulses is ¿ ˆ p=2, the wave packets interfere

in such a way that they interfere constructively at the outer turning point, enhancing

the radial probability density, and destructively at the inner turning point, depleting

the radial probability density. On the other hand, when ¿ ˆ p=2, the situation is
reversed and the radial probability density is at the inner turning point. In both of

these examples with pairs of wave packets with ¿ ˆ §p=2 phase diŒerence, the

interference pattern is that of a full revival with the electron density passing through

the core region at multiples of the classical orbit period. However, the Ramsey

fringes are p out of phase with one another, which results in the region of

constructive interference occurring at opposite ends of the radial coordinate for
the two cases. A third, perhaps more interesting situation arises when the phase shift

is set to ¿ ˆ p. The wave packets at their partial revivals interact in such a way that

an electron density remains at both the inner and outer turning points, creating a

quantum state which never comes to a full revival but is s̀tuck’ in the second order

partial revival. Such a state cannot be generated by single-photon excitation and is

J. R. R. Verlet and H. H. Fielding290
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an atomic representation of the SchroÈ dinger cat state which is discussed in more
detail later in this section.

These interference patterns can be explained in a visual way using the cartoon

plots of ® gure 4. At a second-order partial revival, the portion of the wave packet at

the outer turning point is phase shifted by ¿ ˆ p=2 with respect to the portion at the

inner turning point. This is depicted in ® gure 4 (1). Adding a second wave packet,

(® gure 4 (2a)) with a delay of half the Kepler orbit and no phase shift, 1
2 ½cl ‡ ¿

(where ¿ ˆ 0), the two wave packets (® gure 4 (1) and ® gure 4 (2a)) interfere in such
away that there are still portions of wave packet at each turning point (® gure 4 (3a)).

Introducing a phase shift of ¿ ˆ p=2 in the second wave packet (® gure 4 (2b)) whose

relative phases in the second-order partial revival are p and p=2 at the inner and

outer turning points respectively results in destructive interference at the inner

turning point because these two portions of wave packet are p out of phase. The

interference is constructive at the outer turning point where they are in phase (® gure

Manipulating electron wave packets 291

Figure 3. A plot of the amplitude of Ramsey fringes generated by a pair of interfering wave
packets at the second order partial revival (around 10 ps) as obtained by Noel and
Stroud (1995, ® gure 4). The two wave packets are excited with a delay of half an
orbit period between them plus a controlled phase diŒerence. The phase determines
the nature of the interference: (a) p=2, the resultant wave packet is localized at the
outer turning point; (b) p=2, the wave packet is localized at the inner turning point;
(c) p, the wave packet is localized at both the inner and the outer turning points
creating a quantum state which is s̀tuck’ in a second order partial revival. (Figure 4
from Noel and Stroud (1995).)
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4 (3b)). Similarly, ® gure 4 (3c) shows the interference of the ® rst wave packet with a

second having a phase shift of ¿ ˆ p=2 (® gure 4 (2c)), and ® gure 4 (2d) and ® gure

4 (3d) explain the pattern for ¿ ˆ p.

3.3. Excitation of SchroÈ dinger’ s l̀ive’ and `dead’ cat

Noel and Stroud (1996) have also excited an atomic state resembling SchroÈ din-

ger’s paradoxical cat which highlights the di� culty in drawing the quantal ± classical

boundary. A cat placed in a box with a deadly source of poison is described as a
superposition of both a `dead’ cat and a l̀ive’ cat. Classically, however, the cat must

obviously be either dead or alive. Only upon opening the box (observation) will the

cat be in one distinct state or the other.

A SchroÈ dinger cat state is formed from a superposition of two classical states

which are macroscopically distinguishable. In an atom, a classical state exists in a

J. R. R. Verlet and H. H. Fielding292

Figure 4. The dynamics of interfering wave packets can be visualized using these simple
cartoon plots. In this example, two wave packets are allowed to interfere at their
second-order partial revival, according to the experiments performed by Noel and
Stroud (1995). (1) shows the ® rst wave packet at its partial revival with the relative
phases of the two l̀ittle wave packets’ . (2a) shows the second wave packet, which is
excited half an orbit period later, at its partial revival, with the phases of the two
components relative to those of wave packet (1). Wave packets (1) and (2a) are
allowed to interfere and the resulting electron density as a function of radial distance
r, is illustrated in (3a). (2b), (2c) and (2d) show the second wave packet with its
relative phases when controlled phase shifts of ¿ ˆ p=2; p=2 and p respectively have
been added. (3b), (3c) and (3d) show the resultant electron density when wave packet
(1) interacts with wave packets (2b), (2c) and (2d) respectively.
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harmonic potential. Although an atomic potential is only approximately harmonic,

the electronic wave packet retains classical behaviour for several orbit periods before

the wave packet disperses. At short times, the potential may be treated as a parabolic

potential, and the problem may be described by the Hermite equation. Its

eigenfunctions have a de® nite parity and are called either even or odd states,

¬j i ‡ ¬j i and ¬j i ¬j i respectively.

If we now recall the atomic double-slit experiment, two wave packets were

excited at either end of the Kepler orbit: one wave packet at the inner turning point

and a second wave packet half an orbit period later at the outer turning point. For

·nn ˆ 66, these wave packets are separated by approximately 0.2 mm. Although this is

not quite macroscopic but mesoscopic, the analogy remains signi® cant. The size is

restricted by interactions with the surrounding environment in which the Rydberg

atom exists and cannot be easily overcome in a laboratory. The atomic cat state can

be fully characterized both by using the optical Ramsey method, showing inter-

ference in phase space and by state selective ® eld ionization (SSFI) (Gallagher et al.

1977). As a consequence of the second wave packet, the state distribution is altered

with respect to the single-wave-packet excitation. Two extreme scenarios occur

(® gure 5). When the phase of the second wave packet is set to zero, the even Rydberg
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Figure 5. Rydberg state populations of radial wave packets measured using SSFI. The odd
Rydberg states are shaded light grey and the even states are shaded black. (a) The
distribution of a wave packet excited with ·nn 5 66 using a single short pulse. (b) The
distribution following excitation with a pair of pulses with phase diŒerence p shows
that only the odd states survive, analogous to SchroÈ dinger’s `dead’ cat. (c) The
distribution following excitation with a pair of pulses with phase diŒerence 0 shows
that only the even states survive, analogous to SchroÈ dinger’ s l̀ive’ cat. (Figure 1 from
Noel and Stroud (1996).)
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states are eliminated and only odd Rydberg states are in the superposition. This is

analogous to the odd-harmonic-oscillator cat state or, alternatively, the `dead’ cat.

`Live’ or even-harmonic-oscillator cat states are excited by imposing a ¿ ˆ p phase

shift, in which only even states survive. Note that these states correspond to those in
® gure 4, which are in a permanent (neglecting incoherent decay) second-order partial

revival state. A simple analysis of this state-selective population using multiple

pulses is presented below. These experiments are not restricted to only two phase-

coherent wave packets but may be extended to a train of N pulses (Chen and Yeazell

1997a, 1999a, Noel and Stroud 1997) so that an arbitrary wavefunction may be
excited.

3.4. Dynamics of interfering wave packets
A wave packet formed from a superposition of Rydberg states nj i may be

expressed as

C…r; t† ˆ
X

n

anÁn…r† exp … i!nt†; …11†

where an and !n are the amplitudes and the eigenenergies respectively of the Rydberg

state nj i. Applying the rotating-wave approximation which predicts that only the

terms involving Dn ˆ !n !g !L, where !g is the ground-state energy and !Lthe

laser frequency, will contribute signi® cantly allows us to obtain equations for the

population amplitudes. Anticipating that the excitation will be su� ciently weak so
that the weak-® eld limit is valid, the ground-state population amplitude remains

unchanged and it is only necessary to consider the rate of change in the Rydberg

population:

_aan ˆ i

2
Onagf …t† exp …iDnt†; …12†

where On is the Rabi frequency of the transition between the initial state and a given

Rydberg state. f …t† represent the ® eld to which the system is subjected. In this case,

we consider a number N of pulses. If the pulses are assumed to be Gaussian with

optical frequency !L, the multipulse perturbative ® eld may be written as

f …t† ˆ …2p¼2† 1 exp
t2

2¼2

³ ´
‡

XN 1

i

exp
…t ½i†2

2¼2

Á !
exp …i!L½i†

" #

; …13†

where the sum goes over pulses i, delayed by ½i with respect to the ® rst pulse. As

intended, in the weak-® eld limit, perturbation theory may be used to derive an

expression for the amplitudes of the states in the superposition. In this case, the
amplitudes depend directly on the Fourier transform G…Dn† of the excitation ® eld.

Note that we have introduced the detuning into the pulse following the rotating-

wave approximation:

an ˆ i

2
On exp

D2
n¼2

2

³ ´
1 ‡

X

i

exp‰i…Dn ‡ !L†½iŠ
Á !

: …14†

A similar result was obtained by Noordam et al. (1992) in their proposal of the

Ramsey fringe method and by Chen and Yeazell (1997a) who generalized the scheme

for any number of pulses. Extending these arguments (Krause et al. 1997, Chen and

Yeazell 1998b), a similar scheme can be obtained to excite arbitrary wave packets
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using optimal control in which the multipulse excitation ® eld is replaced with a single

shaped pulse (Schumacher et al. 1995).

This expression was used to calculate Rydberg populations following irradiation

by multiple pulses and is in very good agreement with the two pulse experiments

described above and three pulse experiments implemented by Noel and Stroud

(1997).

A particularly appealing form of equation (14) has been given by Chen and

Yeazell (1997a) for the two pulse case in which the ® rst pulse is allowed to evolve to

the outer turning point before the next wave packet is excited: ½1 ˆ p·nn3. Having

followed their original notation, the frequency terms in the exponent under the sum

are replaced by Dn ‡ !L ˆ D ‡ !n ‡ !·nn; where D ˆ !n !g is the energy of the

centre of the wave packet above the ground state. The eigenfrequency of state nj i
may now be expanded according to equation (9) to the ® rst order and substituted in

the expression for the amplitudes:

an ˆ
i

2
On exp

D2
n¼2

2

³ ´
…1 ‡ exp fi‰¿ ‡ …n ·nn†pŠg†; …15†

where the phase ¿ ˆ D½1 determines the outcome of the excitation. The amplitudes

an of the Rydberg states will only be non-zero if ¿ ‡ …n ·nn†p is an even multiple of p.

When ¿ ˆ 0, this criterion is only obeyed if n ·nn is even. Depending on ·nn, only even

or odd states will be excited in the multipulse excitation. This scenario is identical

with the SchroÈ dinger live and dead cats and is shown in ® gure 6.
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Figure 6. Calculated plots of the amplitudes of the Ramsey fringes and the population
distributions following excitation of a pair of interfering wave packets. The ® rst wave
packet is allowed to evolve to the outer turning point before the second wave packet
is excited and the dynamics and populations of the resultant are probed by a third
wave packet. The relative phases of the pulse pair are: (a) ¿ ˆ 0, (b) ¿ ˆ p, (c)
¿ ˆ p=2 and (d) ¿ ˆ p=2. (Figure 1 from Chen and Yeazell (1997a).)
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3.5. Reconstruction of a wave packet

Following detailed theoretical investigation of these shaped wave packets by

excitation with multiple optical pulses or tailored pulses, it seemed possible to

reconstruct an arbitrary wave packet. The problem of measurement in quantum
mechanics is appreciated (Pauli 1933). All information of a quantum state is

incorporated in its wavefunction or density matrix. Because these are not experi-

mentally observable, detailed knowledge of the wavefunction is not available.

However, there has been theoretical motivation to reconstruct quantum states

(Vogel and Risken 1989).
The method for reconstructing an atomic wave packet proposed by Chen and

Yeazell (1997b) makes use of a combination of the optical Ramsey method and

SSFI, or another high-resolution detection technique. Using SSFI, the population of

the constituent Rydberg states as given by anj j2 are measured with very high

e� ciency. These populations determine the population amplitudes except for the

common phase factor for the Rydberg states: an ˆ anj j exp …i¯n†. This phase
information may be recovered by cross-correlation of the target wave packet with

a well-characterized probe wave packet. By varying the phase between the optical

excitation pulses and therefore between the wave packets, by SSFI, the phase

information of the initial wave packet may be recovered (Chen and Yeazell 1997b,

Weinacht et al. 1998a). The use of cross-correlation is the basic method applied in
spectral interferometry and has successfully been employed for shaped atomic wave

packets by Weinacht et al. (1998a). This technique may also be extended to the

strong-® eld limit in which the excitation ® eld is no longer perturbative (Chen and

Yeazell 1999b). An alternative approach for determining the complex amplitude has

been used by Jones and Campbell (2000) in which the desired phases are retrieved
from a time-dependent probability (Jones 1998) and momentum space distribution

(Campbell et al. 1998).

An optically tailored pulse excites a target wave packet composed of Rydberg

states nj i:

C…t ˆ 0† ˆ
X

n

an nj i: …16†

The wave packet may be shaped using a programmable pulse shaper to shape the

optical pulse (Weiner 2000). In the reconstruction experiment by Weinachet et al., a
Bragg de¯ ector was used (Tull et al. 1996). A second well-characterized optical pulse

then excites a second reference wave packet at a controlled time delay:

CR…t ˆ ½† ˆ
X

n

bn nj i exp …i!g½†; …17†

where !g½ is the phase acquired by the ground or intermediate state gj i, and the

resulting wave packet of both target and reference wave packet may be written as

CT…t ˆ ½† ˆ
X

n

‰an exp … i!n½† ‡ bn exp …i!g½†Š nj i …18†

and the total measured population of a Rydberg state is the cross-correlation of the

two wave packets:

CTj j2ˆ anj j2‡ bnj j2‡2 anj j bnj j cos‰…!n !g†½ ¯nŠ: …19†
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Being independently tailored, the programmable target pulse is no longer phase

locked with respect to the probe pulse and the coherence is lost as the time average of

the cosine term tends to zero. However, the relative phase ¯nm ˆ ¯n ¯m may be

recovered (Weinacht et al. 1998a) by writing the correlation function as

rnm ˆ hPnPmi Pnh i Pmh i
DPn DPm

ˆ cos ‰…!n !m†½ ¯nmŠ; …20†

where DPn is the standard deviation in Pn. It is now straightforward to extract the
desired phase of the population amplitude with respect to a chosen Rydberg state:

¯nm ˆ ¯n ¯m. A graphical representation of an arbitrarily chosen wave packet can

be found in the paper by Weinacht et al.

This technique may be extended in a Rabitz-like feedback loop to create any

desired wave-packet wavefunction and may be likened to a form of quantum
holography (Weinacht et al. 1999). Having reconstructed the wave packet wavefunc-

tion, the diŒerence between any desired wavefunction and the measured wavefunc-

tion for each Rydberg state component may be calculated. This may then be used to

reprogram the pulse shaper and thus the pulse shape in order to alter the phases and

amplitudes of the states in the superposition. Running the feedback loop through a

few iterations, the desired wave packet is constructed to remarkable precision. This is

such a powerful tool since it has the capability of generating designer wave packets
which will allow us to manipulate atomic and molecular processes at a very

fundamental level.

Recently, Rella et al. (2000) measured the phase of a wave packet in a static

electric ® eld at the saddle point as the electron was ejected from the atomic potential.
Upon ejection of the wave packets, the properties remain unchanged as they are

accelerated in the ® eld. At a distance, the electron ¯ ux may then be measured. Each

of these ejected wave packets will have a relative phase associated with it (Texier and

Robicheaux 2000). Using a phase-locked reference pulse, the ionization probability

may be controlled. This probability of ejection is determined by the optical phase
between the excitation pulses, which de® nes the coherent sum of the target and

reference states. The electron ¯ ux is measured using the atomic streak camera

(Lankhuijzen and Noordam 1996). In essence, this method is identical with that

described earlier; however, the wave-packet characteristics are determined at the

saddle point of an atomic potential rather than near the core.

4. The wave packet in three dimensions

So far, this review has focused on the dynamics of radial electron wave packets in
hydrogenic systems. Such radial wave packets are generally the most appealing

because of their close link with classical dynamics and the ease with which they may

be created. Despite the inherent correspondence with a classical electron, a radial

wave packet is not a totally correct analogue. There are two reasons for this: a radial

wave packet undergoes dispersion owing to the anharmonicity of the atomic

potential, and a radial wave packet, as its name implies, is not localized in the
angular coordinate. Both of these problems may be overcome by generating a new

type of wave packet referred to as a Trojan wave packet. Such a wave packet

oscillates along stable points in an atom± rotating ® eld system, closely related to the

stable Lagrange points L4 and L5 in the Sun± Jupiter restricted three-body problem

found in celestial mechanics (Bialynicki-Birula et al. 1994). In this problem, a cluster
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of asteroids (called the Trojans) oscillates at these stable points in space. The

problem may be treated as a restricted three-body problem as the mass of the

asteroids is signi® cantly smaller than the masses of the two primary bodies and its

gravitational ® eld may be ignored. In the atomic analogue, the two primary bodies
are replaced by the atomic ion in a circularly polarized laser ® eld and the asteroids

are replaced by the electron wave packet which is localized at the stable points of the

system. Despite the fact that it is rather di� cult to excite such a wave packet, it does

present an extraordinary quantum state. This atomic analogue of the Trojan asteroid

problem has recently been reviewed by Uzer et al. (2000) and the reader is referred to
this article. Because of the experimental focus of this review, we shall dwell no

further on the Trojan states.

Generation of a wave packet localized in all coordinates in a pure atomic

potential has become possible (Bensky et al. 1998, Bromage and Stroud 1999)

because of the recent development of half-cycle pulses (HCPs) for the excitation and

detection of electron wave packets. HCPs are short pulses of electromagnetic
radiation but diŒer from ordinary pulses in that, as their name suggests, they do

not undergo full 2p cycles. A HCP is really just an electric ® eld that is rapidly

switched on and then oŒagain. The pulse propagates like an electromagnetic wave

with a very special property, namely that its time integral is not zero, as it is for

ordinary electromagnetic radiation, but has a well-de® ned value FHCP. The conse-
quence of this non-zero time integral of the electric ® eld is that a HCP can impart

momentum to an electron. If the momentum increases su� ciently, bound electrons

can escape from the atom and ionize and, contrary to traditional methods, the

electron need not be near the core. In fact, a free electron will be in¯ uenced by HCPs

in much the same way as a bound electron. This feature makes it a signi® cantly more
versatile type of radiation than ordinary optical pulses, which restrict detection of

the electron to near the core because of the requirement of a nearby massive object to

conserve momentum.

For a su� ciently short HCP, such that the electron may be considered to be

stationary over the duration of the ® eld, the momentum transferred to the electron

may be treated as impulsive. The electron will receive a momentum impulse or `kick’

I ˆ
Z

eFHCP…t† dt; …21†

and the momentum of the electron after this kick is given as

p ˆ p0 ‡
Z

eFHCP…t† dt; …22†

where p0 is the initial momentum of the electron. This sudden change in momentum
is accompanied by a change in the energy of the electron:

DE ˆ p2

2m

p2
0

2m
ˆ 1

2m
…I2 ‡ 2p0 I†: …23†

The energy kick depends only on the initial momentum of the electron and the
strength of the electric ® eld.

HCPs have had a considerable impact on studies of stationary states and,

although they have been employed widely to ionize Rydberg states and wave packets

(Jones et al. 1993, Reinhold et al. 1993, Tielking and Jones 1995), they have also been

used to create Rydberg wave packets (Jones 1996, Reinhold and BurgdoÈ rfer 1996,
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Raman et al. 1996, 1997, Campbell et al. 1999). HCPs have also been used to map

out the probability distribution of a wave packet in momentum space (Jones 1996).

HCPs are commonly produced in a thin GaAs semiconductor wafer to which a

® eld of less than 10 kV cm 1 is applied parallel to the surface. A 100 fs laser pulse
induces a coherent electromagnetic pulse to be transmitted through the wafer. This

electromagnetic shock wave may then be directed into free space through the side of

the dielectric. This HCP has a pulse width of ½HCP º 0:5 ps and a bandwidth of about

1 THz or 33 cm 1 (Morou et al. 1981, Auston et al. 1984, De Fonzo et al. 1987,

Fattinger and Grischkowsky 1988, 1989).
Having de® ned HCPs and described brie¯ y how they are made, it is now possible

to move on to describe their implementation in the excitation of three-dimensional

wave packets. Gaeta et al. (1994) proposed a scheme for the experimental excitation

and observation of a spatially localized wave packet involving two distinct steps. The

® rst step involves exciting an eigenstate with chosen eccentricity, such as a circular

state (Molander et al. 1986, Hulet and Kleppner 1983, Delande and Gay 1988, Chen
et al. 1993), of an n manifold of an atom subjected to an external low-frequency ® eld.

In the second step, a suitable HCP coherently redistributes population into states

with the same eccentricity in diŒerent n manifolds, forming a wave packet on a

de® ned Kepler orbit. The initial step involves excitation to the chosen n manifold

using a nanosecond dye laser. A dc Stark ® eld, su� ciently low that it does not upset
the Inglis± Teller limit, is used to lift the degeneracy of the manifold. In one

experimental realization of this scheme, Bromage and Stroud (1999) excited the

red Stark state in the n ˆ 30 manifold of sodium. This r̀ed’ Stark state is the lowest

energy state in the manifold and has maximum eccentricity. The probability

distribution of this state lies along a line con® ned to the negative side of the atom

with respect to the dc Stark ® eld vector. This excitation technique is equally
applicable for a circular state (the state in the middle of the manifold) or a state

with any chosen eccentricity.

With the atom excited to the red Stark state of the manifold, a suitable HCP

(1 kV peak ® eld; 400 fs full width at half-maximum (FWHM)) coherently redis-

tributes the population into red states of neighbouring n manifolds. HCP momentum
transfer processes are conveniently illustrated (® gure 7) when one represents the

quantum-mechanica l probability distribution as an ensemble of classical charges

travelling with the same angular speed spread along the orbit. The HCP will induce a

momentum kick in each member of the ensemble, depending on their orientation

with respect to the HCP ® eld. For a short HCP, this means that the ensemble will

now have an energy distribution while remaining in approximately the same

positions in coordinate space. The distribution in momentum of the ensemble will
cause the low-energy members to catch the high-energy members, leading to a

localized population distribution in three dimensions. Redistribution of population

into other Stark states of neighbouring manifolds is not favoured as the dipole

moments connecting these are signi® cantly lower.

Once the HCP excitation is complete and the wave packet is localized, it will
oscillate along a line between the inner turning point and outer turning point. The

wave packet may be detected by applying a second strong probe HCP. This probe

will give the wave packet a hard kick to ionize it. The dynamics of the wave packet,

shown in ® gure 8, reveal the expected classical oscillations between the turning

points. The localized wave packet shows the expected increased ionization at the core

as the electronic momentum is greater. This method (Gaeta et al. 1994) can be used
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Figure 7. The probability distribution of an electron excited in a circular Rydberg state may
be visualized (in two dimensions) by an ensemble of classical particles moving with
the same angular velocity on a circle. (a) The Rydberg state is subjected to a short
HCP which delivers a momentum kick to each member in the direction of the pulse.
(b) After interaction with the HCP, the members of the ensemble will possess
diŒerent angular velocities. (c) The distribution of the members of the ensemble will
become lopsided. (d) After some time the members of the ensemble will be localized
in one small area of the orbit, forming a wave packet. This is not restricted to
circular Rydberg states and any desired eccentricity may be chosen.

Figure 8. Ionization of a wave packet localized on a linear orbit. The peaks in the signal
representing enhanced ionization which occurs when the electron wave packet is at
the core since this is where the electron momentum is greatest. The time delay is in
units of the 4.1 ps classical orbit period of this particular wave packet. The inset
shows the wave packet at its outer turning point and the relative orientation of the
kick F that it receives from the ionizing HCP pulse. Note that in this example the
pulse is kicking the wave packet away from the core so the modulations are very deep
and clear. (Figure 3 from Bromage and Stroud (1999).)
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to excite a quasiclassical electron on a particular Kepler orbit of any eccentricity. It

could allow new and exciting wave packets to be created, for example a circular wave

packet embedded in an autoionization continuum will not decay through auto-

ionization as the scattering process cannot occur.

An alternative scheme was employed by Bensky et al. (1998) in their eŒorts to

unravel the recombination dynamics of an electron as it is forced back into the

atomic potential. In this experiment, a radial wave packet is excited in the continuum

of atomic calcium via an intermediate. The continuum wave packet behaves much

like a bound wave packet but is not re¯ ected oŒthe atomic potential back towards

the core. Recombination dynamics were then investigated by irradiating the atoms

with short HCPs. With reference to ® gure 9, and again considering the probability

distribution as an ensemble of classical particles moving out radially, the eŒect of

the HCP is to accelerate members travelling in the direction of the ® eld but to

retard those travelling in the opposite direction. With a carefully chosen HCP

® eld, some probability density may be returned into the grasp of the atomic potential

and thus bound. Despite a lack of experimental con® rmation of the existence of a

space-localized wave packet formed in such a way, calculations do show that, after

some time, the wave packet will rephase to form a highly localized probability

distribution.

Such an excitation scheme seems particularly promising to excite highly localized

coherent states similar to those described in section 3. A SchroÈ dinger cat-like state

may be created by exciting phase coherent delayed continuum wave packets which

may then be forced into their desired orbits (depending on the delay between the

Manipulating electron wave packets 301

Figure 9. The probability distribution of a continuum radial wave packet may be visualized
(in two dimensions) by an ensemble of classical particles moving away from the core
radially. (a) Schematic cross-section of the ensemble at the time that the HCP is
applied. (b) Velocities of the ensemble following the momentum kick from the HCP.
The member of the ensemble on the extreme right will be kicked back into the atomic
potential of the parent ion where it will form a highly localized wave packet after
some time. This reasoning may be extended to three dimensions, forming a wave
packet localized in all three dimensions (Jones 1996).
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optical pulses) using a carefully tuned HCP. Wave packet and other studies

exploiting the unique features of HCPs are rapidly increasing in number and

complexity as the HCP develops into shorter and more intense pulses.

5. Non-decaying wave packets in a two-electron atom

So far, we have only considered one-electron systems, such as the ® rst group

atoms, as they are appealingly simple. In these hydrogenic systems, the electron wave

packet moves around a closed-shell atomic core. However, studies of radial wave
packets are certainly not restricted to one-electron atoms and have been observed to

have nearly identical dynamics in a two-electron system (Strehle et al. 1998). Hanson

and Lambropoulos (1995) suggested a control scheme in a two-electron system in

which the excited wave packet would be driven into a non-decaying non-dispersing

form.

Consider a typical alkaline-earth atom with a ground-state con® guration …ns†2.
Exciting one valence electron with a short pulse to a superposition of Rydberg states

leaves the remaining electron in the initial state ns. The excited states of this core

electron represent the excited states of the ionized atom because the Rydberg

electron is su� ciently weakly bound. The wave-packet system may be considered

to be a one-electron atom, and the excitation of this ns electron may be described as
an isolated core excitation (ICE) (Cooke et al. 1978, Wang and Cooke 1991,

1992a,b). ICE has been used in a variety of wave-packet experiments (Jones and

Bucksbaum 1991, Stapelfeldt et al. 1991, Druten and Muller 1996, Campbell et al.

1998) and can be exploited to establish the electronic radial probability distribution

of a wave packet (Jones 1997). In the ground state of the ion, the wave packet is
bound (® gure 10). However, if an ICE drives the core electron to a low-lying excited

J. R. R. Verlet and H. H. Fielding302

Figure 10. Excitation scheme proposed by Hanson and Lambropoulos (1995) to generate a
non-dispersing wave packet in a typical two-electron system. A picosecond pulse
excites a wave packet in the Rydberg series converging to the lowest ionization limit.
If the remaining electron is coupled to a resonance with an intense laser ® eld, the
Rydberg states excited under the wave packet will increase in energy and become
embedded in the continuum. The wave packet may now decay by autoionization
(shown as a grey band).
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state np, the bound wave packet will be coupled to the Rydberg series corresponding

to the np·nnp con® guration, embedded in the ns·nnp continuum.

A degenerate Rydberg level excited in this manner will inhibit autoionization into

the continuum as a consequence of the correlation between the strongly driven core

electron and the Rydberg electron, resulting in a trapping and stabilization phenom-

enon (Robicheaux and Hill 1996, Zobay and Alber 1996, Chen and Yeazell 1998c,

Mecking and Lambropolous 1998). If the initial superposition is trapped, the

superposition stays trapped for ever. If this initial condition is not ful® lled, a self-

trapping mechanism, relying on Raman-like transitions with the ionization con-

tinuum, redistributes population to achieve a non-decaying superposition. In

exciting a radial wave packet, this degeneracy is lifted and the trapped superposition

cannot be maintained because of its time evolution. This may be compensated for by

introducing an ICE ® eld su� ciently strong for Rabi oscillations to occur between the

ns and np states of the ion, such that the Rabi ¯ opping frequency is equal to the

radial orbit frequency.

Hanson and Lambropoulos used the above excitation scheme for a wave packet

centred around the ·nn ˆ 50 Rydberg state, using a Gaussian pulse with a FWHM

½L ˆ ½cl=3 ˆ 6:3 ps. A square pulse ICE was turned on after one orbit of the wave

packet to induce the Rabi oscillation. When the wave packet makes a round trip, the

core is unexcited. The ICE is switched on and population is coherently transferred to

the upper Rydberg series, which lies above the ionization limit of the lower wave

packet. However, decay is inhibited because the wave packet is far from the core so

that there is vanishing spatial overlap between the excited core and wave packet.

When the wave packet returns to the core and coincides with the Rabi ¯ opping time,

O 1
ICE ˆ ½cl, the core electron will again be in its ground state and the wave packet

cannot decay by autoionization. This scenario is depicted in ® gure 11. Decay is

suppressed for several orbit periods. At longer times, the wave packet must spread in
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Figure 11. (a) After the excitation of a wave packet, the wave packet will undergo
dispersion. (b) However, coupling the remaining core electron in a two-electron
system to a state such that the electron orbit has the same frequency as the Rabi
oscillation will prevent dispersion. The wings of the temporally broadened wave
packet are embedded in an autoionization continuum when these parts approach the
core, causing the wave packet to be shaped as shown by the grey shading in (a).
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the atomic potential and might be expected to decay rapidly. This is, however, not

the case. The wave packet is shaped into a non-spreading form and becomes

analogous to a classically evolving electron. This is not like the Trojan wave packet

in which the local potential is made to be harmonic. The two-electron wave packet
excited here exists in an anharmonic potential.

The non-spreading wave packet may be understood by a simple physical insight.

When the spread wave packet approaches the core, the low energy wing will

experience a core that has not undergone the full Rabi cycle. Some population is

left in the upper wave-packet states and decays. The trapping is lost as the orbit
period of the spreading wings is not in phase with the Rabi period and the

amplitudes overlap constructively with the continuum. The low-energy wing will

experience similar decay. This means that the wave-packet is shaped into a non-

dispersing form.

The reverse is also valid. An ICE switched on at ½cl will cause the centre of the

wave packet to decay and the wings to survive. These wings will, after the initial
decay of the central part of the wave packet, be in a non-decaying form. This would

form a wave packet similar to a second-order partial revival.

This non-decaying non-dispersing coupled wave packet has recently been

observed by Chen and Yeazell (1998a) who excited a radial wave packet in atomic

calcium. Two photons from a picosecond laser excite a wave packet with
predominantly nd character from the (4s)2 ground state. The remaining 4s electron

is coupled to the 4p state of the Ca‡ ion through an ICE with a continuous-wave

laser. The coupled wave packet will oscillate between the bound and autoionizing

Rydberg states at the Rabi frequency. When the orbital frequency coincides with this

frequency, decay is predicted to be suppressed. The wave packet is monitored at a

® xed delay, which is long compared with the autoionization lifetime of a single
Rydberg state, using the optical Ramsey method. Without the ICE, the wave packet

is bound and reveals large-amplitude Ramsey fringes for wave packets centred

around a certain ·nn whose orbit period is an integer multiple of the time required to

reach the ® xed delay (® gure 12). When the ICE is turned on, only the wave packet of

energy ·nn whose orbit period is synchronous to the Rabi ¯ opping time, ·nn º 67,
survives, as predicted theoretically. At the ® xed delay for the probe pulse, ® gure 12

shows that there is only signi® cant fringe amplitude around ·nn ˆ 67, indicating

strongly retarded decay with respect to the non-synchronized wave packets.

Although the shaping is a result of the non-decaying phenomenon, direct

observation of the non-dispersive character of these wave packets has not yet been

recorded. The time scales for such observations would be of the order of

nanoseconds. The lifetime of the 4p state is only about 6 ns and so decoherent
population redistribution will cause collapse of the non-decaying wave packet.

Hopefully this shaping process will be observed in the near future, as it is a

remarkable feature of this type of wave packet. Also, excitation of the reverse

`out-of-phase ’ wave packet would provide valuable insight into the process and a

novel way of shaping a wave packet. The main drawback with producing such a
wave packet would be that the amplitude of the wave packet is expected to be small

as most is lost in the initial decay of the central part of the wave packet.

Nevertheless, wave packets beyond the one-electron atom provide new wave-

packet dynamics and means of manipulation.

A particularly subtle experiment employing ICE in a wave-packet atom allows

the electronic radial probability distribution to be measured (Jones 1998). Here, it is
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not the momentum distribution that is measured, as accomplished using unipolar

HCPs with the impulsive momentum retrieval method. The technique involves using

a time-resolved ICE in a multielectron atom. For simplicity, however, an atom with

two optical electrons is considered. Upon excitation of a Rydberg wave packet, the

core electron may be excited with a time delay using a short pulse. If the optical

excitation of the core electron is fast on the time scale of the wave-packet orbit, the

electron will not change over the pulse duration. The spectral line shape of the ICE is

critically dependent on the radial position of the wave packet (Story et al. 1993).

Away from the core, the ICE will behave like a normal transition. The Rydberg wave

packet does not interact with the core electron and the transition will have a spectral

shape determined by the laser pulse. On the other hand, when the wave packet is at

the core, the electrons will interact and may scatter from each other. This has the

eŒect of broadening and shifting the core transition line shape. This shape change in

the core transition line will therefore be indicative of the radial probability distri-

bution of the wave packet. By monitoring the line shape of the ICE at diŒerent time

delays and ICE frequencies, the time-dependent radial probability distribution of the

wave packet may be obtained (Jones 1998).
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Figure 12. Amplitude of Ramsey fringes as a function of the principal quantum number n,
for a wave packet (1) without a core excitation and (2) where a strong ICE is
synchronized with the orbit frequency of a wave packet with average ·nn ˆ 67. At this
energy, the wave packet is in a non-decaying form: (a) in both cases, the calculation
results; (b) in both cases, the corresponding experimental data. Each peak in (1)
appears whenever the wave packet has undergone an integral number of orbits to
reach the ® xed delay time of the Ramsey probe pulse. Note that, in (2), only the
synchronized case (·nn ˆ 67) producing a non-decaying wave packet shows a signi® cant
Ramsey fringe amplitude. (Figures 2 and 3 from Chen and Yeazell (1998c).)
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6. The Rydberg electron in a molecule

So far we have seen that, through the interaction of external ® elds, the wave

packet may be manipulated to inhibit or enhance decay, or to form close quantum

analogues of the classical electron or even exotic wave packets. Some more

fundamental interactions have recently been observed in our own group when we

looked beyond the atomic systems and excited an electron wave packet in a molecule

(Stavros et al. 1999a, b ). Although simple one electron systems are excellent starting

blocks to unveil fundamental electron wave-packet dynamics, molecular systems are

somewhat more interesting because they present the wave packet with a non-static

core. Vibrational motion occurs on a femtosecond time scale and has been

investigated in its own right (Zewail 2000). Rotational motion on the other hand

is several orders slower (for low quantum numbers) because the energy separations

between adjacent rotational levels are only of the order of several wavenumbers. The

rotational period TRot ˆ f2Bc‰N…N ‡ 1†Š1=2g 1, of a typical diatomic compound,

where B is the rotational constant and N is the molecular angular momentum

(excluding spin) in Hund’ s case (d) nomenclature, is of the order of picoseconds. For

electron wave packets excited in a Rydberg series where the energy separations are

comparable with those of the rotational levels, the Born± Oppenheimer approxima-

tion fails as the period of nuclear rotation is similar to the classical orbit period of

the electron.

Perhaps one of the main drawbacks of looking at electron wave packets in

molecules is that the density of states under the excitation pulse is far greater because

numerous interleaved Rydberg series converge to diŒerent rovibrational levels of the

ion. This problem may be somewhat overcome by exciting via a well-de® ned

intermediate level. In their study, Stavros et al. (1999a, b) used a rotational level

of the v 0 ˆ 1 level of the A 2§‡ state in NO. This state is the lowest-lying Rydberg

state in this molecule and consequently has a strong Dv ˆ 0 propensity for excitation

to high-lying Rydberg states. Predominantly vibrational autoionizing states are

excited in Rydberg series converging to the v‡ ˆ 1 limit of the ion upon irradiation

with a picosecond pulse. Selectively exciting via a particular rotational state of this

intermediate level allows some selectivity over the rotational states of the core of the

Rydberg wave-packet system.

The optical Ramsey method was employed to induce the usual phase-dependent

population of the Rydberg states. By scanning the picosecond laser over a range of

central principal quantum numbers ·nn, the time of the ® rst return of the wave packet

to the core was recorded and is plotted in ® gure 13, together with an example of one

spectrum. Clear deviations from the expected hydrogenic orbit period trend

(proportional to ·nn3) are visible at regions where the period of the electron motion

is comparable with the rotational period of the ion core. This coincidence of the

electronic and nuclear periods and the accompanying observed plateau suggest a

strong intramolecular interaction in which the quasiclassical electron is coupled to

the rotating dipole on the molecular ion. It should be noted that the spectrum

presented in ® gure 13 shows a well-de® ned ® rst peak, quite similar to the atomic

case. The high density of states in the excitation region does, however, cause rapid

dispersion of the wave packet. It should also be noted that the NO system is a rather

complex diatomic compound in which the Rydberg states are strongly coupled with

the autoionization continuum, dissociation continuum above the B and L valence

states, and other Rydberg series.
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The graph in ® gure 13 shows the orbit period trend for an electron excited via the

N 0 ˆ 0 rotational level in the v 0 ˆ 1 level of the intermediate. This electronic

intermediate is the 3ss state which has predominantly s character but also some

d-character impurities. Excitation from this rovibrational level is expected to couple

predominantly to np…N‡† where N‡ ˆ 0. Such a non-rotating core cannot couple to

the electron. However, the d character is expected to play a signi® cant role,

particularly since the np states are predissociating. The d character means that the

states np…N‡ ‡ 2† and nf…N‡ ‡ 2† are included in the superposition. The observed

coupling occurs between an N‡ ˆ 2 core (the rotational period of such a core is

TRot ˆ 3:5 ps). Similar coupling may be observed for excitation via diŒerent

rotational states (Smith et al. 2000). However, rotational periods increase rapidly

with increasing rotational quantum number and so for experimental reasons cannot

be observed for N‡ > 3.

In addition to these observations, in our investigations into the temporal

behaviour at longer times, a rather surprising perturbation occurring at well-de® ned

excitation energies has been noted. Superimposed on the peaks occurring at the

classical orbit period is a much slower oscillation (® gure 14) for which a proper

quantitative description is still being investigated.
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Figure 13. (a) A typical recurrence spectrum for a wave packet excited in NO at around
n0 5 30 via the N 0 ˆ 0, J ˆ 1=2 rotational level of the A state; note that the intensity
is normalized on the t ˆ 0 peak. (b) Experimental ® rst recurrence times as a function
of n0 (*). Excitation was via the N 0 ˆ 0; J 0 ˆ 1

2 level of the A state. Note that the
errors in the measured times are less than the circle diameters whereas errors in n0,
arising from the uncertainty in the central wavelength of the frequency-doubled
picosecond radiation (§0:1 nm), are shown in the ® gure: (Ð Ð ) calculated classical
orbit periods ½cl ˆ 2pn3, for a wave packet composed of (a) np(0) and (b) np(2) states:
(......) calculated rotational period of the NO‡ core in its N‡ ˆ 2 rotational state (the
Born± Oppenheimer limit). Note that the experimental times are close to the classical
periods except in the region of the Born± Oppenheimer limit where the rotational
period of the ion core dominates. (Figure 1 from Smith et al. (2000).)
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A complementary new approach for the detection of Rydberg wave packets in a

predissociating molecule is also being developed by our group. The optical Ramsey
method has a major limitation in that it measures the autocorrelation function of the

wave packet Á…t†jÁ…t ˆ 0†ih which is simply the Fourier transform of the frequency

domain. This is overcome in a time-dependent pump± probe type of experiment.

However, as mentioned earlier, a poor signal-to-noise ratio normally makes this

technique unattractive. We are proposing to excite the dissociation products in a
time-resolved fashion and to distinguish between the NO‡ and N‡ ions using a time-

of-¯ ight technique. This is possible since the np states predissociate rapidly via a

valence state. The atomic product may thus be ionized with a second delayed

picosecond pulse (® gure 15) in a Zewail-type pump-probe experiment. Additionally,

the probe laser could be a femtosecond laser to gain additional sensitivity. This
technique will provide valuable information about electron wave-packet behaviour

in NO and could of course be applied to a range of other molecules.

7. Concluding remarks

In the last decade, and in particular in the last 5 years or so, electronic wave

packets have, since their ® rst observation (ten Wolde et al. 1988, Yeazell and Stroud

1988), been recognized and characterized as very important non-stationary quantum

states, bordering on the classical limit of high principal quantum numbers. Coherent
control schemes employed using such wave packets have proved to be of funda-

mental importance in our quest to understand quantum phenomena. Exotic

quantum states such as the SchroÈ dinger cat states may be excited and studied.

Importantly, using a coherent control scheme, the wavefunction of a wave packet

may be measured and altered to any new desired form. The implication of this
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Figure 14. Amplitude of Ramsey fringes following excitation of a wave packet in NO at
around n1 ˆ 23. The fast modulation has a period of 2.2 ps and represents the return
of the electron wave packet to its initial composition. The slow modulation has a
period of 16 ps and is most likely to be due to a coherent transfer of population
between the np(1) and np(3) coupled Rydberg series.
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powerful tool not only is restricted to atomic, molecular or solid-state wave packets

but also has recently been shown to have uses in quantum computations . Weinacht

et al. (2000) have excited a programmable wave packet as a quantum data register.

The power of quantum computing stems from the fact that a qubit, being a

superposition of two states, can have more values than a classical 1/0 switch. A

wave packet made of N Rydberg states may be excited in which every state in the

superposition has a de® ned phase ¿n with respect to the initial state. A program-

mable s̀earch’ pulse may then be used to read the data register. If the readable states

are labelled by a phase ¿n ˆ p, then a search wave-packet phase shifted by p with

respect to the original wave packet (excluding any state labelling), will enhance the

Rydberg population in the labelled state as they are in phase. All the other states will

be out of phase with the search wave packet and are pumped back down to the initial

state. The result of the data register search may then be obtained by state-selective

ionization, revealing only the labelled state.

The study of molecular Rydberg wave packets is a newly emerging ® eld. Control

of molecular electron wave packets should lead to control of dissociation, auto-

ionization and other processes. Molecular Rydberg wave packets are much more

complex than their atomic counterparts, and the characterization and measurement

of their wavefunctions will be tricky as state-selective ® eld ionization cannot resolve

the various angular and rotational momentum components. Molecular systems will

undoubtedly provide one of the next big challenges for both experimentalists and

theoreticians.

With this review, we hope that we have provided a feel for this rapidly expanding

area and the signi® cant implications of radial electron wave packets and electron

wave packets in general.
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Figure 15. Excitation scheme for a proposed detection technique for predissociating
molecules such as NO.
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